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Abstract. Problem definition: In this paper, we study a predisaster relief network design 
problem with uncertain demands. The aim is to determine the prepositioning and realloca
tion of relief supplies. Motivated by the call of the International Federation of Red Cross 
and Red Crescent Societies (IFRC) to leave no one behind, we consider three important 
practical aspects of humanitarian operations: shortages, equity, and uncertainty. Method
ology/results: We first employ a form of robust satisficing measure, which we call the short
age severity measure, to evaluate the severity of the shortage caused by uncertain demand in 
a context with limited distribution information. Because shortages often raise concerns 
about equity, we then formulate a mixed-integer lexicographic optimization problem with 
nonconvex objectives and design a new branch-and-bound algorithm to identify the exact 
solution. We also propose two approaches for identifying optimal postdisaster adaptable 
resource reallocation: an exact approach and a conservative approximation that is more 
computationally efficient. Our case study considers the 2010 Yushu earthquake, which 
occurred in northwestern China, and demonstrates the value of our methodology in miti
gating geographical inequities and reducing shortages. Managerial implications: In our 
case study, we show that (i) incorporating equity in both predisaster deployment and post
disaster reallocation can produce substantially more equitable shortage prevention strate
gies while sacrificing only a reasonable amount of total shortage; (ii) increasing donations/ 
budgets may not necessarily alleviate the shortage suffered by the most vulnerable indivi
duals if equity is not fully considered; and (iii) exploiting disaster magnitude information 
when quantifying uncertainty can help alleviate geographical inequities caused by uncer
tain relief demands.
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[Grant RGPIN-2016-05208], the National Natural Science Foundation of China [Grants 71971154, 
72010107004, 72091214, and 72122015], and the Canada Research Chairs [Grant CRC-2018-00105]. 
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1. Introduction
The number of disasters reported worldwide and 
their impact on the population has increased in recent 
decades. Extreme events such as tornadoes, earth
quakes, or hurricanes can strike a community without 
warning and cause massive damage and many casual
ties. For example, the Emergency Events Database has 
recorded 7,348 natural disasters over the last 20 years 
(2000–2019), affecting more than 4 billion people (many 
on more than one occasion), and causing economic 
losses of $2.97 trillion around the world (EM-DAT 
2020). The massive-scale social and economic damages 
caused by disasters have brought increasing attention 
to the need for effective disaster relief management.

Prepositioning of emergency supplies can be an 
effective mechanism for improving response to natural 
disasters. In the fall of 2019, Hurricane Dorian was esti
mated to have caused up to $3 billion in losses in the 
Caribbean (CNBC 2019), and highlighted the inade
quacy of existing prepositioning strategies. This paper 
focuses on the prepositioning strategy in disaster relief 
systems and considers the predisaster relief network 
design problem (PRNDP) to prepare for sudden disas
ters. This problem determines the locations and capaci
ties of the response facilities and the inventory levels at 
each facility, as well as reallocations of relief supplies to 
distribution locations to improve the effectiveness of 
the postdisaster relief operations.
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A good location and emergency inventory preposi
tioning strategy is critical for disaster relief operations 
because lack of relief supplies may cause suffering and 
loss of life among victims. However, disaster prepared
ness is subject to considerable uncertainty because it is 
not known where events will occur (or if they will occur 
at all). As a result, disaster-stricken areas often face 
shortages of emergency supplies. For example, the Fritz 
Institute reported that there was a massive shortage of 
supplies and medical personnel during the 2004 tsu
nami in Southeast Asia (Fritz Institute 2005). Food and 
water shortages also appeared in the Philippines after 
being hit by typhoon Haiyan in 2013 (Uichanco 2022). 
Furthermore, in the winter of 2016/2017, an extreme 
dzud (a kind of dreaded severe weather) exposed more 
than 255,000 herders in Mongolia to water and food 
shortages and killed millions of animals (BBC 2016). To 
alleviate the suffering caused by shortages, since 2011, 
appeals for funding by humanitarian organizations 
(HOs) have steadily increased, but more than 55% of 
the requirements have still not been met (Besiou and 
Van Wassenhove 2020).

Shortages of relief supplies often raise concerns about 
the equity of disaster relief systems. Specifically, on Jan
uary 1, 2016, the world officially began implementation 
of the 2030 Agenda for Sustainable Development and 
pledged to leave no one behind. In addition, many large 
international HOs, such as the IFRC, began to call on 
leaving no one behind in humanitarian response (IFRC 
2018). However, there is little research to date on the 
equity regarding predisaster deployment decisions. We 
attempt to bridge this gap in our research.

1.1. Research Questions
This study mainly attempts to answer the following 
research questions: 
• How to measure the severity of possible shortages in the 

presence of demand uncertainty? Predisaster deployment 
decisions are often constrained by demand uncertainty 
and limited budgets, which may lead to shortages of sup
plies in certain affected areas after a disaster. Moreover, 
shortages would differently affect people in affected 
areas. In New York City, for example, three weeks after 
Hurricane Sandy, people in high-poverty census tracts 
remained significantly more worried about food and 
medicine than those in wealthy neighborhoods posses
sing the coping capacity for disaster recovery (Subaiya 
et al. 2014). Therefore, humanitarian practitioners need to 
measure the severity of the shortage according to local 
conditions under demand uncertainty to make effective 
predisaster deployment decisions. To answer this ques
tion, we use a form of robust satisficing measure to miti
gate the severity of shortages under uncertainty.
• How to allocate limited resources equitably among ben

eficiaries to reduce the impact of shortages? Equity is an 
essential requirement in humanitarian operations and 

has received widespread attention. Starr and Van Was
senhove, writing in the Special Issue for the Board of the 
POMS College on Humanitarian Operations and Crisis 
Management (Starr and Van Wassenhove 2014, p. 929), 
state “Humanitarians need to bring relief items to all 
beneficiaries in an equitable fashion, even if this is far 
from being efficient.” They continue “There is an obvi
ous need to consider equity in addition to classical effi
ciency or cost minimization objectives.” Therefore, HOs 
need to give a more formal treatment of equity in pre
disaster deployment and humanitarian response (Besiou 
and Van Wassenhove 2020). In this study, we character
ize the concepts of an equitable solution and formulate a 
lexicographic optimization problem to mitigate inequity 
caused by shortages.
• How to address the inherent difficulty of quantifying 

postdisaster demand to improve on predisaster deployment 
and postdisaster response decisions? The initial preposi
tioning deployment decisions are difficult to make in 
the presence of demand uncertainty. For the HOs to 
deploy high inventory levels in each possible disaster 
area will be too costly for their limited budgets and 
donations, especially if postdisaster demands are rela
tively small (Stauffer and Kumar 2021). If preposition
ing of supplies is not enough, then during a major 
disaster, many regions may suffer from shortages and 
even secondary casualties. Thus, HOs want to find a 
trade-off between small initial deployment levels that 
are within limited resources and large initial deploy
ment levels that avoid serious shortages. Furthermore, 
a reasonable description of uncertain demands is a key 
issue in finding such a balance (Uichanco 2022). In re
sponse to this question, we develop a distributionally 
robust optimization model that adapts the ambiguity 
set to the magnitude of the disaster.

1.2. Our Contributions
1. Model: Our model considers three important prac

tical aspects of humanitarian operations (i.e., shortages, 
equity, and uncertainty). First, to the best of our under
standing, this is the first paper to use the shortage severity 
measure (SSM) to control the uncertain relief shortages. 
Specifically, as an example of satisficing measure (Brown 
and Sim 2009), the SSM is an axiomatically motivated 
way of measuring the severity of random shortages when 
compared with targeted maximum shortage thresholds. 
Second, we propose a model that ensures that the allo
cations of the limited resources are equitably distrib
uted among disaster-prone regions. This is done by 
formulating a mixed-integer lexicographic optimization 
problem with nonconvex objectives. Third, to account 
for the inherent difficulty of quantifying postdisaster 
demand distributions, we use a two-stage robust sto
chastic optimization model that relies on event-wise 
moment information. Overall, we consider our model to 
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take an important step toward bridging the gap between 
theory and practice in humanitarian operations.

2. Solution approach: First, we discuss two approaches 
for identifying optimal adaptable resource reallocation: 
an exact approach and a conservative approximation 
that is based on affine decision rules and allows us to 
solve instances of realistic size. Empirically, the latter 
also appears surprisingly accurate with a maximum 
measured optimality gap of 8%. Second, we handle the 
lexicographic minimization aspect of the model using a 
new branch-and-bound algorithm. This algorithm cor
rects for a deficiency found in the procedure proposed 
by Qi (2017). In fact, our algorithm appears to be the first 
iterative scheme with the guarantee of finding exact 
solutions to nonconvex, mixed-integer, lexicographic 
optimization problems.

3. Managerial insights: Our case study involving a 
real earthquake case provides three interesting insights. 
First, compared with approaches that minimize the 
total shortage without consideration of equity, deci
sions that incorporate equity in pre- and postdisaster 
management can, in some cases, achieve higher levels 
of equity at the cost of only slightly increasing the total 
shortage. Second, if equity is ignored, the shortages ex
perienced by some beneficiaries may not be alleviated 
with an increase in donations. Third, disaster magnitude 
information, if properly segmented, can alleviate inequi
ties caused by uncertain relief demands.

The paper is organized as follows. In Section 2, we 
provide a brief literature review. In Section 3, we discuss 
three important practical aspects of humanitarian opera
tions and present the model. In Section 4, we describe 
the solution procedure. In Section 5, we perform several 
numerical studies. We finally conclude in Section 6. All 
proofs can be found in the online appendix.

2. Literature Review
In this section, we present a review of the related litera
ture, that is, uncertainty, shortage, and equity. After that, 
we discuss the distinction between our paper and the 
existing literature.

2.1. Predisaster Relief Network Design Under 
Uncertainty

Predisaster relief network design involves decisions re
garding facility locations, inventory prepositioning, and 
resource reallocation under uncertainty. The PRNDP as 
a whole was first studied by Balcik and Beamon (2008), 
where the authors propose a scenario-based model to 
maximize the benefits provided to affected people. Rawls 
and Turnquist (2010) formally introduce the PRNDP 
that simultaneously determines the decisions of facility 
location, inventory prepositioning and resource distri
bution under demand uncertainty. They formulate a 
risk-neutral two-stage stochastic programming model 

and propose a Lagrangian L-shaped method. Following 
their path, stochastic programming is widely used to 
address uncertainty in PRNDP. In addition, some litera
ture begins to focus on the measurement of risk by apply
ing concepts such as the conditional value-at-risk (CVaR) 
(Noyan 2012) and probabilistic constraints (Rawls and 
Turnquist 2011, Hong et al. 2015). Elçi and Noyan (2018) 
further develop a chance-constrained two-stage stochas
tic programming model that combines quantitative risk 
(CVaR) and qualitative risk (probabilistic constraints).

All the previous literature is scenario-based stochas
tic programming, which has to deal with difficulties in 
selecting scenarios. This challenge motivates research 
on the robust optimization method as an alternative. Ni 
et al. (2018) propose a min-max robust model that inte
grates the three-part decision making of predisaster 
relief network design. To address uncertainties in sup
ply, demand, and road link capacity, they construct 
budgeted uncertainty sets and develop computation
ally tractable reformulations based on the budgeted 
uncertainty sets. Similarly, Velasquez et al. (2019) apply 
the budgeted uncertainty set to model demand uncer
tainty and propose a robust model for prepositioning 
relief items. Paul and Wang (2019) further develop a 
two-stage robust optimization model and consider two 
types of robustness, one of which is the budgeted 
uncertainty set.

To hedge uncertainty in humanitarian operations, sto
chastic relief network design often assume uncertainty 
parameters following fully known distributions and 
use a finite number of scenarios to model uncertainties. 
This mainly faces two challenges in practical implemen
tation: (i) computational difficulties for instances with 
abundant scenarios and (ii) sampling difficulties for un
certainty parameters of high dimension. Conversely, al
though robust optimization with budgeted uncertainty 
sets does not require any knowledge of distributions 
except for their support, it tends to produce overly con
servative solutions due to hedging against the rare 
worst case.

2.2. Shortage
To reduce shortages in disaster areas, the existing opti
mization models are mainly described from two per
spectives: the objective function and the conditions on 
the constraints. As for the former, shortage is added to 
the objective function as a penalty cost. Most optimiza
tion models for predisaster relief network design use 
cost minimization as their objective to reduce shortages. 
Specifically, in the widely used two-stage stochastic 
and/or robust programming models, shortage cost is 
usually considered in the second stage, whereas facility 
cost and ordering cost are incurred in the first stage. For 
postdisaster resource reallocation, Altay (2013) considers 
both the quantity and capability of multiple resources, 
minimizing the total capability shortages in the objective 
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function. From the perspective of constraint conditions, 
to control shortages, probabilistic constraints are typi
cally used to ensure that all relief demands can be satis
fied with a prescribed high probability (Ozbay and 
Ozguven 2007, Hong et al. 2015). In addition, Rawls and 
Turnquist (2011) introduce service quality constraints that 
ensure that the probability of meeting all demand is not 
lower than a given target level.

Because the penalty cost of shortage is difficult to 
determine in practice, some HOs will not use cost to 
guide their decision. Gralla et al. (2014) study five attri
butes (e.g., quantity, type, location, speed, and cost) 
based on the preferences of experts toward humanitar
ian logistics, and the results show that quantity deliv
ered is the most valued objective, whereas cost is the 
least important. In addition, although we can ensure 
that the satisfaction of demands is maintained at a cer
tain level by probabilistic constraints, we may ignore 
the unmet demands and the seriousness of their impact.

2.3. Equity
In the fields of operations research and management sci
ence (OR/MS), there are many different ways of incorpo
rating equity into decision making. For a comprehensive 
overview of equity in OR/MS problems, we refer readers 
to the recent reviews provided by Karsu and Morton 
(2015). One of the most common ways of modeling 
equity is the lexicographic optimization approach, which 
is applied in many fields, such as resource allocation 
(Luss 1999), network flows (Nace and Orlin 2007), and 
appointment scheduling (Qi 2017). Moreover, the solu
tion derived by the lexicographic approach is sometimes 
considered to be the most equitable solution (Karsu and 
Morton 2015).

In humanitarian operations, equity concerns play a 
role in the reallocation of relief items to beneficiaries. To 
provide relief resources to demand locations in a fair 
manner, the existing literature mainly studies equity 
from the perspectives of response time and supply 
quantity. Huang et al. (2012) use a convex disutility func
tion to study the arrival time equity in humanitarian 
logistics problems. Holguı́n-Veras et al. (2013) introduce 
a new concept called deprivation cost, which depends on 
the deprivation time. They quantify equity concerns for 
postdisaster humanitarian logistics by using social costs, 
which is the sum of logistic and deprivation costs. Fol
lowing their direction, some studies have employed dep
rivation costs in their model to ensure equitable relief 
delivery operations in some sense (Ni et al. 2018, Yu et al. 
2018). Gutjahr and Fischer (2018) show that minimizing 
the total deprivation cost given a budget may yield ineq
uitable solutions and they propose to extend the depri
vation cost objective with the Gini inequity index. In 
terms of equitable allocation quantities, Noyan et al. 
(2016) compute the maximum proportion of unsatisfied de
mand among demand locations and apply a proportional 

allocation policy to ensure equitable allocation of re
sources in the last mile. Velasquez et al. (2019) introduce 
equity constraints to ensure that relief items are distrib
uted proportionately to the demand. Huang and Rafiei 
(2019) investigate equitable resource allocation by bal
ancing the delivery quantities and times to different 
locations. Arnette and Zobel (2019) apply a measure of 
relative risk and develop a risk-based objective function 
to ensure equitable allocations of assets in advance of a 
natural disaster. Recently, Uichanco (2022) propose a 
stochastic programming model for typhoon prepared
ness with two objectives, one of which is a fair strategy 
by minimizing the expected largest proportion of unmet 
demand.

2.4. Distinction of Our Work from Past Literature
Motivated by special features that HOs face in practice, 
our paper considers three important aspects of human
itarian operations: shortages, equity, and uncertainty. 
Previous studies on predisaster relief network design 
mainly use a cost criteria (e.g., setup cost, purchase 
cost, transportation cost, shortage cost, etc.), whereas 
some HOs will not use cost to guide their decision 
(Uichanco 2022). Besiou and Van Wassenhove (2020) 
also argue that it is not easy to evaluate the perfor
mance of humanitarian operations through cost. Fur
thermore, as we mentioned before, HOs usually put 
the cost in the least important position and the amount 
of supply delivered in the first place (Gralla et al. 
2014). Therefore, we use the amount of supply short
age to measure the severity of shortages and formulate 
a mixed-integer lexicographic optimization problem 
with nonconvex objectives.

Although there has been significant progress in ad
dressing lexicographic optimization models (see, for in
stance, Marchi and Oviedo 1992, Nace and Orlin 2007), 
these approaches cannot be applied to nonconvex mod
els with discrete and continuous decisions, which have 
received less attention in the literature. Nace and Orlin 
(2007) provide a polynomial approach for linear lex
icographic optimization problems and prove its opti
mality. Ogryczak et al. (2005) propose a reformulation 
based on conditional means for lexicographic optimiza
tion problems with nonconvex feasible sets. Because our 
model has a nonconvex objective function, this method 
will lead to a mixed-integer nonconvex programming 
reformulation, which we expect to quickly become in
tractable for large-scale problems. Recently, Letsios 
et al. (2021) propose a branch-and-bound algorithm 
for a scheduling problem to obtain exact lexicographic 
scheduling. Because the scheduling problem belongs to a 
typical combinatorial optimization problem, they enu
merate all possible job-to-machine assignment, which 
cannot be applied to problems that include both discrete 
and continuous decisions. In this stream of literature, the 
most relevant work to ours is Qi (2017), who propose a 
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lexicographic minimization procedure for mixed-integer 
lexicographic optimization model with nonconvex objec
tives. However, we find that such a procedure cannot 
guarantee optimality for our problems. Therefore, our 
paper corrects for a deficiency found in Qi (2017). Specifi
cally, we propose a new branch-and-bound algorithm 
for solving nonconvex, mixed-integer, lexicographic opti
mization problems and prove its optimality.

3. Problem Formulation
In this section, we begin by introducing some notational 
conventions used in the remaining sections. We then pre
sent a multiobjective two-stage stochastic optimization 
model for the PRNDP. After that, we introduce a mea
sure to evaluate shortages in the presence of demand 
uncertainty. Finally, we formulate a lexicographic mini
mization problem to address equity concerns.

3.1. Notation
We use bold characters to represent vectors (e.g., x ∈ Rn). 
We use |L | to denote the cardinality of a set L and (x)+
to denote max(x, 0). We use P0(Rn) to represent the set 
of all probability distributions on Rn. A random variable, 
d̃, is denoted with a tilde sign, and we use d̃ ~ P, P ∈P0 
(Rn) to define d̃ as a n-dimensional random variable 
with distribution P. We assume that P lies in a distribu
tional ambiguity set F ⊂P0(Rn) and denote EP[·] as the 
expectation over the probability distribution P.

3.2. Two-Stage Model
Given a set of potential demand locations L, we assume 
that a facility can be opened at any such demand loca
tions. Each location i ∈ L represents a geographical area 
(e.g., state, county, district, etc.) with a random relief 
demand d̃i : Ω→ R+ on a probability space (Ω,Σ, P̄). 
Let K denote the discrete set of possible facility sizes, 
indexed by κ, and let Mκ > 0 denote the capacity of 
facility of category κ. Associated with each candidate 

location i and each size category κ is a fixed location cost 
ciκ > 0. We consider a single type of inventory unit that 
consists of a bundle of critical relief supplies, including 
prepackaged food, medical kits, blankets, and water. 
The total amount of these emergency supplies, denoted 
by R > 0, is determined by predisaster donations. Let 
B>0 denote the total budget for opening the facilities. In 
the predisaster operations, HOs need to decide where to 
set up the facilities for prepositioning emergency sup
plies and how much inventory to preposition in each 
facility that has been opened. After a disaster, the reallo
cation operation of emergency supplies should be able 
to adjust adaptively. To formulate the model, let xiκ ∈

{0, 1} denote whether a facility of size category κ ∈K is 
opened at location i ∈ L and let ri ≥ 0 denote the number 
of supplies prepositioned at location i ∈ L. In addition, 
let ỹij : Ω→ R+ be an adaptive strategy indicating the 
amount of supplies reallocated to location j ∈ L from 
location i ∈ L under each possible outcome ω ∈Ω and 
similarly ũi : Ω→ R+ be a random variable denoting the 
planned amount of unsatisfied demand at location i ∈ L. 
The parameters and decision variables for the model are 
summarized in Table 1.

To determine predisaster deployment decisions, we 
formulate the following constraints:

X

κ∈K

xiκ ≤ 1, i ∈ L, (1a) 

ri ≤
X

κ∈K

Mκxiκ, i ∈ L, (1b) 

X

i∈L
ri ≤ R, (1c) 

X

i∈L

X

κ∈K

ciκxiκ ≤ B: (1d) 

According to Constraint (1a), not more than one facility 
can be opened at any demand location. Constraint (1b) 
states that the quantity of prepositioned relief items 

Table 1. Model Parameters and Decision Variables

Notation Description

Sets
L Set of demand locations
K Set of facility size categories

Parameters
ciκ Fixed cost of opening a facility of size category κ at location i
Mκ Capacity of a facility of size category κ
R A total amount of emergency supplies
B Budget limit for opening the facilities
τi The tolerance threshold of supply shortage for demand location i
d̃i Random relief demand at location i

Decision variables
xiκ One, if a facility of size category κ is opened at location i; zero otherwise
ri The amount of supplies prepositioned at facility location i
ỹij The amount of supplies allocated to location j from location i
ũi The amount of unmet demand (supply shortage) at location i

Li et al.: Distributional Robustness and Inequity Mitigation 
Manufacturing & Service Operations Management, Articles in Advance, pp. 1–18, © 2023 INFORMS 5 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

12
0.

23
4.

13
3]

 o
n 

30
 O

ct
ob

er
 2

02
3,

 a
t 1

8:
07

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



cannot exceed facility capacity. Constraint (1c) speci
fies that the total amount of the emergency supplies is 
R. Constraint (1d) ensures that the construction of re
sponse facilities are within the given budget. Note that 
one also can decide whether to consider other costs in 
the budget constraint according for different settings. 
Furthermore, the shortage can be represented by a con
vex piecewise linear function as defined next.

Definition 1 (Supply Shortage). For any fixed decision 
(x, r, y) and realization d, the relief supply shortage for 
location i ∈ L is defined by the function

f (x, r, y, d) :� di +
X

j∈L\i
yij� ri +

X

j∈L\i
yji

0

@

1

A

0

@

1

A

+

:

This gives rise to the following multiobjective optimi
zation problem under uncertainty:

(PMOU) minimize
x, r, ỹ, ũ

{ũi}i∈L (2a) 

s:t: ũi �

 

d̃i +
X

j∈L\i
ỹij �

 

ri +
X

j∈L\i
ỹji

!!+

,

a:s:, i ∈ L, (2b) 
X

j∈L\i
ỹij ≤ ri, a:s:, i ∈ L,

(2c) 

ỹij ≥ 0, a:s:, i, j ∈ L,

(2d) 

(1a)–(1d), 

where “a.s.” stands for almost surely. Constraint 
(2b) ensures the exact calculation of the relief supply 
shortages. Constraint (2c) restricts that the amount of 
supply delivered from each facility does not exceed 
the level of prepositioned supplies. The objective of 
problem PMOU is both multiple, as it attempts to mini
mize the shortage at each location i ∈ L, and uncertain, 
as the shortages depend on random demand. Hence, 
in the next two sections, we will discuss how we pro
pose to control the risk of excessive shortage and trad
ing off between the different locations in an equitable 
way. In doing so, it will be useful to summarize prob
lem PMOU using

minimize
ũ∈U

ũ, 

where U represents the set of random shortage vectors 
that can be produced in problem PMOU, that is,

U :� {ũ |∃x, r, ỹ, (1a)� (1d), (2b)� (2d)}:

3.3. Shortage Severity Measure
For any feasible decisions (x, r), we can first consider 
in isolation how to treat the uncertainty about supply 
shortages ũi at each location i. This will be done by 
assuming throughout this section that L � 1, so that u 
will be referred as the random shortage ũ. The classical 
stochastic relief network design approaches assume a 
known probability setting and use a risk measure such 
as the expected supply shortage (Rawls and Turnquist 
2010). Conversely, classical robust optimization tends to 
produce overly conservative solutions because of ignor
ing any knowledge regarding the distribution except for 
its support. Therefore, we apply an alternative modeling 
paradigm known as distributionally robust optimization 
(DRO) and assume that P is only known to belong to a 
convex ambiguity set F that is characterized by partial 
distribution information estimated from historical data 
(see Bertsimas et al. (2019) and references therein). As a 
result, we can seek the worst-case distribution to protect 
the risk measure by hedging against all probability dis
tributions in F . In our model, we will consider a generic 
risk constraint in the form

sup
P∈F
ρ(ũ) ≤ τ, 

where ρ(ũ) denotes a risk measure of supply shortages, 
τ represents a bounding threshold for the risk of supply 
shortages.

Next, we discuss the specific form of risk measure. 
When the coherent risk measure CVaR is specified as 
the risk measure, we can set ρ(ũ) :� CVaR1�α(ũ). We 
refer interested readers to Rockafellar et al. (2000) and 
references therein for more details and examples of 
modeling and optimization problems using CVaR. In 
this setting, the CVaR is the expected shortage given that 
it falls beyond its 1� α quantile. Hence, intuitively, this 
setting ensures that the CVaR of the supply shortage 
with 1� α confidence remains under τ for all distribu
tions in the set F . In addition, CVaR has been adopted 
as a preferred measure in disaster management. For 
example, Elçi and Noyan (2018) suggest that CVaR is a 
reliable measure for the supply shortages. Alem et al. 
(2016) compare different risk measures, showing that 
the CVaR concept leads to higher demand satisfaction.

With the worst-case CVaR as a risk measure, one can 
impose

sup
P∈F

CVaR1�α(ũ) ≤ τ (3) 

to keep the worst-case CVaR of the supply shortages 
below a threshold τ. The worst-case CVaR is still a coher
ent risk measure and exhibits some valuable properties 
(Zhu and Fukushima 2009). We propose an equivalent 
representation of the worst-case CVaR of shortages in 
Lemma 1.
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Lemma 1. The bounded worst-case CVaR constraint (3) is 
equivalent to:

inf
η≥0
η +

1
α

sup
P∈F

EP[(ũ � η)+]

 !

≤ τ: (4) 

With the worst-case CVaR of shortages in hand, we next 
introduce a measure to evaluate the uncertain relief sup
ply shortage in Definition 2.

Definition 2 (Shortage Severity Measure). Assume an 
uncertain supply shortage denoted by the random vari
able ũ ∈U and a tolerance threshold τ ≥ 0. If we only 
know that the true distribution P lies in a distributional 
ambiguity set F , we define the SSM ρτ : U→ [0, 1] as 
follows:

ρτ(ũ) :�
inf

α∈(0,1]:V1�α(ũ)≤τ
α if V0(ũ) ≤ τ,

1 if V0(ũ) > τ,

8
<

:

where V1�α(ũ) is the worst-case CVaR1�α of the ũ 
defined as

V1�α(ũ) :� inf
η≥0
η+

1
α

sup
P∈F

EP[(ũ� η)+]

( )

, α ∈ (0, 1], 

so that V0(ũ) :� supP∈FEP[ũ].
Intuitively, for any given random shortage, SSM 

quantifies the risk of excessive shortage using a number 
between zero and one. If there is no possibility of short
age beyond τ, then the value of the SSM is zero. When 
the supply shortage is on average close or beyond τ, the 
SSM value will be close to one. It is desirable to have an 
uncertain supply shortage with the smallest SSM value, 
because it implies that even for those unlikely massive 
demands, their worst-case CVaR can still be no more 
than the tolerance threshold.

The further interpretation is that the SSM fixes the 
shortage threshold τ and then identifies the smallest level 
of risk tolerance α such that the worst-case CVaR1�α of 
shortages evaluated at that level is acceptable. Given that 
CVaR1�α(X) is known to always provide an upper 
bound for VaR1�α(X), SSM can also be interpreted as a 
tractable method for minimizing the probability of violat
ing the shortage threshold (see Brown and Sim (2009) for 
more details).

The SSM falls within the framework of satisficing 
measures proposed by Brown and Sim (2009) and is 
analogous to the delay unpleasantness measure in Qi 
(2017) and the buffered probability of exceedance in Mafu
salov and Uryasev (2018). To the best of our knowl
edge, this is the first time that a satisficing measure 
has been used in disaster management. Specifically, 
SSM can be regarded as ρτ(ũ) :� 1� S(τ� ũ), where S 
is a satisficing measure. We further present several 
important properties in Proposition 1.

Proposition 1. Given ũ, ũ1, ũ2 ∈U, the SSM satisfies the 
following properties: 

i. Monotonicity: if P(ũ1 ≤ ũ2) � 1 for all P ∈ F , then 
ρτ(ũ1) ≤ ρτ(ũ2).

ii. Satisfaction: ρτ(ũ) � 0 if and only if P(ũ ≤ τ) � 1 for 
all P ∈ F .

iii. Dissatisfaction: if supP∈FEP[ũ] > τ, then ρτ(ũ) � 1.
iv. Quasi-convexity: for any α̂ ∈ (0, 1], the set U(α̂) :�
{ũ |ρτ(ũ) ≤ α̂} is closed and convex.

The monotonicity property implies that the smaller the 
shortage, the lower the risk. This is consistent with disaster 
management practices because the decision maker prefers 
smaller shortages. The satisfaction property ensures that, if 
an uncertain shortage is fully tolerable in the affected area, 
then the value of the measure is zero. This property also 
indicates that shortages below the tolerable threshold are 
the most preferred. The dissatisfaction property shows that, 
if an uncertain shortage exceeds the tolerable threshold of 
the affected area in worst-case expectation, then the sever
ity of the shortage reaches the limit, which should be 
avoided in disaster management. The quasi-convexity is an 
appealing property in optimization that, under certain 
conditions such as the convexity of U, allows us to effi
ciently obtain a global SSM minimizer.

3.4. Equity Modeling
Equity is an essential issue in humanitarian operations 
and providing relief supplies to every affected individ
ual in an equitable manner has become a social consen
sus. While there are many concepts with regard to 
equity, typically they can be divided into horizontal 
equity and vertical equity (Karsu and Morton 2015). In 
the context of disaster management, horizontal equity 
refers to every individual or group being given the 
exact same resources to meet their needs (an example 
of which can be seen in Figure 1(a)), whereas vertical 

Figure 1. (Color online) Horizontal Equity and Vertical Equity 

(a) (b) 

Source. This figure was adapted from a figure © 2014, Saskatoon Health 
Region.
Notes. (a) Horizontal equity. (b) Vertical equity.
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equity allocates the resources based on the different 
needs of the recipients (Figure 1(b)). Because HOs 
need to consider relief demands of all victims from a 
global perspective and provide treatment accordingly, 
we mainly focus on vertical equity. Moreover, supply 
shortages often raise concerns about equity, so we 
characterize the concept of an equitable solution (Luss 
1999) from the perspective of shortages in Definition 3.

Definition 3 (Equitable Solution). A solution is called 
equitable if no affected area can reduce its SSM value 
without raising an already equal or higher SSM value 
of another area.

To obtain such an equitable solution, we can formu
late a lexicographic minimization problem according to 
the Rawlsian principle of justice (Rawls 1971), as follows:

(PLM) ũ∗ ∈ arg leximin
ũ∈U

rt(ũ), (5) 

where rt(ũ) :� [ρτ1
(ũ1),ρτ2

(ũ2), : : : ,ρτ |L | (ũ |L | )]
⊤, and 

where ũi and τi respectively denote uncertain shortage 
and tolerable shortage thresholds for location i ∈ L. Let 
ũ∗ denote the optimal lexicographic solution that pro
vides the lexicographically minimal vector a∗ :� rt(ũ∗). 
To keep this paper self-contained, we briefly provide the 
definition of lexicographic order in Definition 4.

Definition 4 (Lexicographic Order). Given d ∈ R |L | , let 
d
→

∈ R |L | denote the vector d with its indices reordered 
so that the components are in nonincreasing order. The 
vector d ∈ ∆ is lexicographically less than d′ ∈ ∆, de

noted by d≼d′ if either d
→

� d
→′

or there exists a k ∈

{1, : : : , |L | }, such that d
→

i � d
→′

i for all i< k and d
→

k < d
→′

k. 
Furthermore, a vector d ∈ ∆ is said to be lexicographically 
minimal in some ∆ ⊆ R |L | if for every vector d′ ∈ ∆, 
d≼d′.

Remark 1. In Problem PLM, our definition of lexico
graphic ordering does not impose an a priori ordering 
on which elements of rt(ũ) should be minimized first. 
It rather should be understood as minimizing in order 
from one to |L | the terms of the sorted (in decreasing 
order) r→t(ũ).

With this objective in hand, we can present our pro
posed predisaster relief network design problem with 
equity (PRNDP-E):

(PRNDP-E) leximinimize
x, r, ỹ, ũ

rt(ũ) (6a) 

s:t: (1a)–(1d), (2b)–(2d):
(6b) 

Here, “leximinimize” refers to our search for the mini
mal feasible solution in terms of lexicographic ordering. 
Mathematically, x is discrete, whereas r is continuous, 
both ỹ and ũ are adaptable, and each ρτ(·) is quasi- 
convex, we say that our problem belongs to the class of 

distributionally robust mixed-integer nonconvex two- 
stage lexicographic optimization problems. Further
more, as we show in Section 2.4 and Online Appendix 
A, we find that the lexicographic minimization procedure 
proposed by Qi (2017) for such problems cannot 
guarantee optimality. This motivates us to develop an 
efficient computational method with the guarantee of 
finding exact solutions to nonconvex, mixed-integer, 
lexicographic optimization problems.

Remark 2. PRNDP-E offers a way of handling short
age risk with equity in mind. Alternative formulations 
can also be proposed that use other risk metrics than 
worst-case SSM, for example, the worst-case expecta
tion or CVaR. We will explore these alternative formu
lations later in the paper.

4. Solution Approach
In this section, we first propose a new branch-and-bound 
algorithm to address the lexicographic minimization aspect 
of the PRNDP-E. We then handle demand—distribution 
ambiguity by the robust stochastic optimization ap
proach. Finally, we discuss two approaches for identi
fying optimal adaptable resource reallocation.

4.1. Branch-and-Bound Algorithm
We first focus on proposing a branch-and-bound algo
rithm (Algorithm 1) for solving nonconvex mixed- 
integer lexicographic optimization models of the form 
presented in problem PLM. For convenience, we refer to 
the lexicographic minimal vector as a∗ :� rt(ũ∗) ∈ R |L | , 
to the lexicographic order as ≼ , and to ā and a as 
respective upper and lower bounds for a∗ if a≼a∗≼ ā. 
The algorithm starts by minimizing a worst-case SSM 
over all locations i ∈ L. Then the procedure branches 
according to locations imposing that the SSM for this 
location does not exceed the minimax value that was 
identified at its parent node. Hence, each node n in the 
enumeration tree N corresponds to a minimax prob
lem (7) in which the SSM for some locations in L̄n can
not exceed αn

i , whereas the worst SSM is minimized for 
the other locations (i.e., i ∈ L=L̄n). A lower bound an 

for the children of each node is also maintained and 
compared with the best solution ā found thus far to 
trim the node if no improvement can be achieved.

Algorithm 1 (Branch and Bound Algorithm for Lexico
graphic Optimization Problem PLM) 

1: Input: A set U and vectored risk measure r : U 

→ R |L |
2: Output: The lexicographic minimal vector a∗ and 

a lexicographic minimal solution u∗.
3: Set αi :�∞ for all i, and some arbitrary ū ∈ U.
4: Initialize enumeration tree N :� {n0}with L̄n0 :� ∅, 

an0
i :��∞ for all i.

5: while N ≠ ∅ do

Li et al.: Distributional Robustness and Inequity Mitigation 
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6: Select a node n in the enumeration tree N and 
remove n from N (Node selection)

7: if an
⋏ ā then (Node expansion)

8: Solve the following minimax problem associ
ated with node n,

min
ũ∈U

max
i∈L=L̄n

ρτi
(ũi) (7a) 

s:t: ρτi
(ũi) ≤ α

n
i , i ∈ L̄n, (7b) 

9: Let v∗n and ũ∗n be optimal value and the mini
mizer of Problem (7)

10: Construct ān as follows:

ān
i :�

αn
i if i ∈ L̄n

v∗n otherwise

(

11: if ān ≼ ā then (Update best solution)
12: Let ā :� ān and ū :� ũ∗n.
13: end if
14: if |L=L̄n | > 1 then (Branching)
15: for j ∈ L=L̄n do
16: Create new node n′ with L̄n′ :� L̄n ∪ j and

α n′
i :�

αn
i if i ∈ L̄n

v∗n if i � j
�∞ otherwise

8
<

:

17: Append the new node n′ to N.
18: end for
19: end if
20: end if
21: end while
22: return a∗ :� ā and u∗ :� ū.

Remark 3. Algorithm 1 might in the worst case expand 
a number of nodes that is factorial with respect to the 
number of locations. To keep the list of expandable 
nodes as small as possible, in our implementation we 
make two changes to Algorithm 1. First, in the step of 
branching (i.e., Step 16), one can alternatively obtain a 
lower bound using the following model for all i ∈ L=L̄n′ :

αn′
i :�min

ũ∈U
ρτi
(ũi)

s:t: ρτj
(ũj) ≤ α

n
j , j ∈ L̄n,

ρτj
(ũj) ≤ v∗n, j ∈ L=L̄n:

Second, in Step 6, we select the node with lowest lower 
bound first. With these changes, we observed empiri
cally in our case study that there is never a need to 
expand a number of nodes that is comparable to |L | !.

We now prove the optimality of the output vector 
a∗ in Theorem 1.

Theorem 1. The vector a∗ returned by Algorithm 1 is lexi
cographically minimal, that is, a∗≼rt(ũ) for all ũ ∈U.

Because we need to solve a series of similar minimax 
Problems (7) repeatedly, we then mainly focus on solving 

these problems. By Definitions 1 and 2, we can reorganize 
Problem (7) as the following distributionally robust opti
mization (DRO) problem:

(PDRO) v∗n :� inf
x, r, h,α, ỹ, ũ

α (8a) 

s:t: ηi +
1
α

sup
P∈F

EP[(ũi � ηi)
+
] ≤ τi,

i ∈ L \ L̄n, (8b) 

ηi +
1
αn

i
sup
P∈F

EP[(ũi � ηi)
+
] ≤ τi,

i ∈ L̄n, (8c) 

ũi � di +
X

j∈L\i
ỹij � ri +

X

j∈L\i
ỹji

0

@

1

A

0

@

1

A

+

,

a:s: under all P ∈ F , i ∈ L, (8d) 
X

j∈L\i
ỹij ≤ ri, a:s: under all P ∈ F , i ∈ L, (8e) 

ỹij ≥ 0, a:s: under all P ∈ F , i, j ∈ L, (8f) 

(1a)� (1d),α ∈ (0, 1], h ≥ 0: (8g) 

We note that ηi +
1
α supP∈FEP[ũi� ηi]

+ is nonincreasing 
in α, which implies that the set of feasible αs has the 
form [α∗, 1]. Hence, one can solve problem PDRO by 
performing a bisection search for α∗, which at each step 
tests for the feasibility PDRO when α is fixed to some 
value. The latter reduces to verifying the feasibility of a 
convex optimization problem. However, we still face 
two challenges in solving problem PDRO: (i) how to con
struct an ambiguity set F and (ii) how to develop a trac
table formulation so that a feasible solution can be 
quickly found.

4.2. Robust Stochastic Optimization Approach
To handle problem PDRO, we deploy the framework of 
robust stochastic optimization (RSO), where the uncer
tainty associated with problems is described by an event- 
wise ambiguity set.

4.2.1. Event-Wise Ambiguity Set. The uncertain de
mands are strongly correlated with covariates (e.g., the 
seismic magnitude scales), so we can raise the level of 
forecasting for uncertain demands by using such data. 
It follows that we need to consider uncertain covariates 
and uncertain demands to construct an event-wise am
biguity set (Chen et al. 2020). For example, in the context 
of earthquake preparedness, the Richter scale (ML) can be 
used as a covariate to construct an event-wise ambiguity 
set: When an earthquake reaches magnitude ML7.0, it 
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will cause more damage than an earthquake of magni
tude ML5.0, and the demand for relief supplies will also 
be higher. For simplicity, we further divide the space of 
covariates into |S | nonoverlapping regions to form |S |
scenarios. This gives rise to the outcome space Ω :� {(d̃, 
s̃) ∈ R |L | × |S | }. Let s represent a scenario taking values 
in S and ps denote the probability of scenario s happen
ing. Furthermore, we have P(s̃ � s) � ps and 

P
s∈Sps � 1, 

where s̃ represents a set of random scenarios whose real
ization probabilities may be uncertain. The joint distri
bution of (d̃, s̃) is denoted by P ∈ F . Now, we specify the 
event-wise ambiguity set F as

F :� P ∈P0(R |L | × |S | ) :

(d̃, s̃) ~ P
P(d̃ ∈Ds | s̃ � s) � 1,

s ∈ S

EP[d̃ | s̃ � s] � ms,
s ∈ S

EP[ | d̃ �ms | | s̃ � s] ≤ ns,
s ∈ S

P(s̃ � s) � ps, s ∈ S

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

, 

where Ds is the support set defined as

Ds :� {d̃ ∈ R |L | : ds ≤ d̃ ≤ d̄s}:

In F , it is natural to incorporate the mean, the mean 
absolute deviation and the support set of the random 
variable d̃. Specifically, for different scenarios, the 
bounded support set defined in the first set of equality 
constraints may differ. Conditioning on the scenario 
realization, the mean of d̃ is specified in the second set 
of equality constraints, while the third set of inequality 
constraints provides upper bounds on the mean abso
lute deviation of d̃. The last set of equality constraints 
specifies the probability of each scenario. F requires 
simple descriptive statistics from data and allows us 
to model a rich variety of structural information about 
the uncertain demand.

4.2.2. Model Reformulation. The event-wise ambiguity 
set F involves nonlinear moment constraints, so we 
introduce an auxiliary probability space Ω′ :� {(d̃, z̃, s̃) ∈
R |L | × R |L | × |S | } to reformulate the ambiguity set F 

as the projection of a lifted ambiguity set G:

G :� Q ∈P0(R |L | ×R |L | × |S | ) :

(d̃, z̃, s̃)~Q
Q((d̃, z̃) ∈ D̄s | s̃ � s) � 1,

s∈S

EQ[d̃ | s̃ � s] �ms, s∈S

EQ[z̃ | s̃ � s] ≤ ns, s∈S

Q(s̃ � s) � ps, s∈S

8
>>>>>>>>><

>>>>>>>>>:

9
>>>>>>>>>=

>>>>>>>>>;

, 

where D̄s is the lifted support set defined as

D̄s :� (d̃, z̃) ∈ (R |L | × R |L | ) : ds ≤ d̃ ≤ d̄s

| d̃�ms | ≤ z̃

( )

:

Compared with the original ambiguity set F , the lifted 
ambiguity set G is a set of distributions of random triplet 
(d̃, z̃, s̃). Furthermore, following recent results in DRO 
(Bertsimas et al. 2019), we can define the ambiguity set 
F as the set of marginal distributions over (d̃, s̃) for all 
Q ∈ G. That is, F �

Q
d̃, s̃G. With the lifted ambiguity set 

G in hand, we transform problem PDRO in Lemma 2.

Lemma 2. The distributionally robust optimization prob
lem PDRO with F , that is, F �

Q
d̃, s̃G, is equivalent to the 

following adjustable robust optimization (ARO) problem:
(PARO) v∗n :�

inf
x, r, h,α, {ys(·)}s∈S

p1, p2, p3 ≥ 0

α (9a) 

s:t: ηi +
1
α

X

s∈S
(π1

si + (p
2
si)
′ms + (p3

si)
′ns) ≤ τi,

i ∈ L \ L̄n, (9b) 

ηi +
1
αn

i

X

s∈S
(π1

si + (p
2
si)
′ms + (p3

si)
′ns) ≤ τi,

i ∈ L̄n, (9c) 

π1
si + (p

2
si)
′d+ (p3

si)
′z ≥ 0,
(d, z) ∈ D̄s, s ∈ S, i ∈ L,

(9d) 
π1

si + (p
2
si)
′d+ (p3

si)
′z ≥�psηi,
(d, z) ∈ D̄s, s ∈ S, i ∈ L,

(9e) 

π1
si + (p

2
si)
′d+ (p3

si)
′z ≥ ps

 

di +
X

j∈L\i
ys

ij(d, z)

�

 

ri +
X

j∈L\i
ys

ji(d, z)

!

� ηi

!

,

(d, z) ∈ D̄s, s ∈ S, i ∈ L,
(9f) 

X

j∈L\i
ys

ij(d, z) ≤ ri, (d, z) ∈ D̄s, s ∈ S, i ∈ L,

(9g) 
ys

ij(d, z) ≥ 0, (d, z) ∈ D̄s, s ∈ S, i, j ∈ L

(9h) 
(1a)–(1d), α ∈ (0, 1], h ≥ 0: (9i) 

Here, each ys
ij : R |L | × R |L | → R, and where π1

si, p2
si and 

p3
si are the dual variables associated with first, second, and 

third constraints that define G.
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Problem PARO is a semi-infinite programming problem 
with an infinite number of constraints and adaptive deci
sion variables. Specifically, the adaptive decisions ys

ij can 
be seen as general functions of random vectors (d̃, z̃). 
Therefore, problem PARO is not yet directly solvable.

4.3. Identifying Optimal Adaptable Resource 
Reallocation

4.3.1. Exact Solution. Based on a vertex enumeration 
(VE) method, we first present an exact linear program
ming reformulation for problem PARO in Proposition 2.

Proposition 2. The adjustable robust optimization problem 
PARO is equivalent to the following mixed-integer linear pro
gram:

(PVE)v∗n :�

inf
x, r, h,α, {ys(·)}s∈S

p1, p2, p3 ≥ 0

α (10a) 

s:t: ηi +
1
α

X

s∈S
(π1

si + (p
2
si)
′ms + (p3

si)
′ns) ≤ τi,

i ∈ L \ L̄n, (10b) 

ηi +
1
αn

i

X

s∈S
(π1

si + (p
2
si)
′ms + (p3

si)
′ns) ≤ τi,

i ∈ L̄n, (10c) 
π1

si + (p
2
si)
′d(ω) + (p3

si)
′z(ω) ≥ 0,

ω ∈Ωs, s ∈ S, i ∈ L, (10d) 
π1

si + (p
2
si)
′d(ω) + (p3

si)
′z(ω) ≥�psηi,

ω ∈Ωs, s ∈ S, i ∈ L, (10e) 
π1

si + (p
2
si)
′d(ω) + (p3

si)
′z(ω)

≥ ps

 

di(ω) +
X

j∈L\i
ys

ij(ω)

�

 

ri +
X

j∈L\i
ys

ji(ω)

!

� ηi

!

,

ω ∈Ωs, s ∈ S, i ∈ L, (10f) 
X

j∈L\i
ys

ij(ω) ≤ ri, ω ∈Ωs, s ∈ S, i ∈ L, (10g) 

ys
ij(ω) ≥ 0, ω ∈Ωs, s ∈ S, i, j ∈ L, (10h) 

(1a)–(1d), α ∈ (0, 1], h ≥ 0:

Here, each ys
ij : Ωs→ R, and for all s ∈ S, the set {d(ω)}}ω∈Ωs 

contains all vertices of the bounded polyhedron D̄s
b defined as

D̄s
b :� {(d̃, z̃) ∈ R |L | × R |L | : ds ≤ d̃ ≤ d̄s, | d̃i�µ

s
i | ≤ z̃i

≤max{ds
i �µ

s
i ,µ

s
i � ds

i } ∀i ∈ L}:

The number of vertices indexed by Ωs for all s ∈ S grows 
exponentially with the number of locations. In practice, 
we can use a column-and-constraint generation (C&CG) 

method to speed up the resolution. We however con
sider further investigation of acceleration schemes to fall 
beyond the scope of this paper, and instead derive in the 
next subsection a conservative approximation that takes 
the form of a more reasonably sized mixed-integer linear 
programs (MILP).

4.3.2. Affinely Adjustable Robust Counterpart. We 
apply the idea of an affine decision rule to address adap
tive decisions and solve an approximate problem. More 
specifically, for each scenario s ∈ S, we approximate the 
adaptive decision by an affine function ys(·) ∈A, where

A :�

8
><

>:
y : R |L | × R |L | → R |L | × |L | :

∃y0, y1
l , y2

l ∈ R
|L | × |L | , ∀l ∈ L

y(d, z) � y0 +
X

l∈L
y1

l dl +
X

l∈L
y2

l zl

9
>=

>;
: (11) 

We then have the following affinely adjustable robust 
counterpart (AARC) of problem PARO:

(PAARC)vAARC
n :�

inf
x, r, h,α, {ys(·)}s∈S

p1, p2, p3 ≥ 0

α (11a) 

s:t: ηi +
1
α

X

s∈S
(π1

si + (p
2
si)
′ms + (p3

si)
′ns) ≤ τi,

i ∈ L \ L̄n, (11b) 

ηi +
1
αn

i

X

s∈S
(π1

si + (p
2
si)
′ms + (p3

si)
′ns) ≤ τi,

i ∈ L̄n, (11c) 
π1

si + (p
2
si)
′d+ (p3

si)
′z ≥ 0,
(d, z) ∈ D̄s, s ∈ S, i ∈ L,

(11d) 
π1

si + (p
2
si)
′d+ (p3

si)
′z ≥�psηi,
(d, z) ∈ D̄s, s ∈ S, i ∈ L,

(11e) 

π1
si + (p

2
si)
′d+ (p3

si)
′z ≥ ps

 

di +
X

j∈L\i
ys

ij(d, z)

�

 

ri +
X

j∈L\i
ys

ji(d, z)

!

� ηi

!

,

(d, z) ∈ D̄s, s ∈ S, i ∈ L,
(11f) 

X

j∈L\i
ys

ij(d, z) ≤ ri, (d, z) ∈ D̄s, s ∈ S, i ∈ L,

(11g) 
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ys
ij(d, z) ≥ 0, (d, z) ∈ D̄s, s ∈ S, i, j ∈ L,

(11h) 

ys(·) ∈A, s ∈ S (11i) 

(1a)–(1d),α ∈ (0, 1], h ≥ 0:

Because Problem PAARC has an infinite number of con
straints, it cannot be solved directly. One can alterna
tively view some constraints in problem PAARC as 
robust counterparts of the linear optimization problem 
under the lifted support set D̄s for all s ∈ S. Hence, we 
can transform it into a linear optimization problem via 
standard techniques from the robust literature. For pre
sentation brevity, the derivation of the resulting MILP 
is relegated to Online Appendix B.6.

Moreover, AARC can also lead to improvements in 
computational performance. Empirically, according to a 
preliminary study in Appendix D.3, AARC appears sur
prisingly accurate with a maximum measured optimality 
gap of 8%. Regarding computation time, AARC returns 
a solution in three seconds on average for experimental 
instances consisting of 13 locations, whereas VE takes 
more than two hours for |L | ≥ 9. Therefore, in the fol
lowing real-world case study, we apply AARC to solve 
problem PARO to achieve the right trade off between 
quality of solution and speed of execution.

5. Computational Results
In this section, we conduct a series of numerical studies 
based on a real earthquake case that occurred in Yushu 
County, Qinghai Province, China, in 2010. This case 
consists of 13 locations and 15 links. The deterministic 
parameters (e.g., cost, capacity) and demand-related 
parameters are from Ni et al. (2018). Moreover, as dis
cussed in Section 4.2.1, we use the Richter scale to con
struct the event-wise ambiguity set. For presentation 
brevity, most details of the numerical studies are pushed 
to Online Appendix D.1. In what follows, we compare 
the performance of different predisaster relief network 
design approaches in terms of equity, total shortage, and 
deployment plan. We also investigate the impact of the 
size of total donation (and budget) and of the choice of 
uncertainty model on performance. As we have men
tioned in Remark 2, the effects of three choices of risk 
measures are compared in Online Appendix D.4. Online 
Appendix D.5 finally offers an additional sensitivity 
analysis regarding the threshold vector t. All experi
ments are carried out on a PC with a 3.6-GHz processor 
and 16 GB RAM. The models are coded in JAVA and 
solved using IBM ILOG CPLEX Optimization Studio 
12.7.1. Finally, all adjustable robust optimization pro
blems are solved using their respective affinely adjust
able robust counterpart.

5.1. Comparison of Equity Performance
We denote the model that considers equity in both pre
disaster deployment and postdisaster reallocation by 
PRNDP-E and use PRNDP-NE to refer to the bench
mark model without equity in both stages (shown in 
Online Appendix C). We also investigate the setting 
where the decision maker considers equity only when 
reallocating supplies after the disaster (with predisaster 
deployment fixed to solution of PRNDP-NE), denoted 
by PRNDP-NE-E. We test three models—PRNDP-E, 
PRNDP-NE-E, and PRNDP-NE—and compare their 
out-of-sample performances under the five commonly 
used equity indices (shown in Online Appendix D.2). 
Specifically, we first solve the models to optimality and 
obtain the optimal decisions (x∗, r∗). After that, given 
each of the solutions (x∗, r∗) and an observed sample 
(s, d) pair, for PRNDP-E and PRNDP-NE-E we solve a 
deterministic lexicographic optimization problem to min
imize the shortage of each location, while for PRNDP-NE 
we minimize the total shortage. We then examine (i) the 
maximum shortage gap (MSG); (ii) the relative mean 
deviation (RMD); (iii) the variance (VAR); (iv) the sum of 
pairwise absolute differences (SPAD); and (v) the Gini 
coefficient (Gini) of 1,000 test samples.

Figure 2 presents the distributions of equity indices 
for 1,000 test samples under the PRNDP-E, the PRNDP- 
NE-E, and the PRNDP-NE solutions. It also presents the 
distribution of worst shortage and sum of shortages. 
First, note that, for all tested equity indices, the PRNDP-E 
and the PRNDP-NE-E perform better than the PRNDP- 
NE because a smaller index value is more desirable. It 
indicates the importance of incorporating equity in the 
allocation of relief resources. Second, we can observe that 
the performance of PRNDP-E is better than PRNDP-NE- 
E. The result shows that incorporating equity already in 
the stage of predisaster deployment can further improve 
the equity of resource allocation. This confirms that HOs 
can draw real value from jointly considering deployment 
and reallocation strategies when searching for the most 
equitable allocation of relief supplies. More precisely, 
when it comes to the mean, the 95%VaR, the 99%VaR, 
and the standard deviations (STD), the PRNDP-E ap
proach also outperformed the other two approaches (see 
Table 2 for detailed statistics). Moreover, all considered 
models can be solved within reasonable amount of time. 
The average computational times to solve the PRNDP-E, 
the PRNDP-NE, and PRNDP-NE-E were, respectively, 
586, 3, and 3 seconds.

We further conduct experiments on the Gini coeffi
cient. Because the Gini coefficient is often represented 
graphically through the Lorenz curve, Figure 3 shows 
the Lorenz curve of shortage distributions by plotting 
the location percentile by shortages on the x axis and 
cumulative shortages on the y axis. We can observe that 
the curve of PRNDP-E is closer to the line of perfect 
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equality with a Gini coefficient equal to 0.08, which is 
smaller than the results of the other two approaches.

To capture more of the impact of equity, we conduct 
more numerical experiments. Specifically, we first add a 
perturbation ∆ to the mean of the out-of-sample demand 
distribution, that is ms

out :� (1+∆)ms for all s ∈ S. Then we 
generate 1,000 test samples from the out-of-sample distri
bution according to the value of ∆ (see Online Appendix 

D.1 for details). In Table 2, we summarize the out- 
of-sample performance of equity indices under the 
PRNDP-E, PRNDP-NE-E, and PRNDP-NE. We observe 
that on the average and in the extremes (VaR@95% and 
VaR@99%) the PRNDP-E continues to outperform the 
other two approaches with regard to all equity indices. 
This observation suggests that PRNDP-E does help 
address equity concerns in humanitarian operations.

Table 2. Out-of-Sample Statistics of Equity Index Under PRNDP-E, PRNDP-NE-E, and PRNDP-NE

∆ Statistic

PRNDP-E PRNDP-NE-E PRNDP-NE

MSG RMD VAR SPAD MSG RMD VAR SPAD MSG RMD VAR SPAD

�0.10 Mean 0.44 1.42 0.44 18.51 2.64 6.23 5.22 96.74 3.57 7.97 6.98 107.58
Var@95% 3.02 9.15 1.15 118.92 18.04 49.43 43.44 633.80 25.26 54.24 49.04 740.64
Var@99% 10.66 36.08 14.79 469.03 28.74 53.43 107.43 1,034.60 37.69 63.08 118.37 1,251.48
Standard deviation 1.80 6.18 32.81 80.38 6.50 18.85 280.38 178.14 8.76 19.96 306.21 271.43

�0.05 Mean 1.69 4.89 2.73 63.71 4.84 19.07 19.16 250.35 8.50 23.22 35.43 322.19
Var@95% 11.99 36.85 16.37 479.00 28.61 121.38 133.17 1,596.64 49.46 137.75 208.64 1,941.40
Var@99% 19.56 73.78 53.46 959.19 41.29 181.62 277.25 2,371.20 74.52 214.92 537.53 3,042.16
Standard deviation 4.49 14.48 144.08 188.36 10.05 41.90 727.23 551.33 17.83 50.66 1,261.12 709.21

0.00 Mean 3.23 8.53 6.51 111.60 7.25 25.94 31.01 341.42 17.59 51.02 130.17 727.48
Var@95% 20.00 58.38 39.26 758.99 37.05 138.79 196.94 1,804.22 90.37 277.77 732.13 3,976.16
Var@99% 28.03 94.89 102.31 1,233.51 47.49 207.78 359.79 2,701.20 142.62 339.63 1,508.01 5,086.36
Standard deviation 7.17 21.09 270.41 276.09 13.13 50.49 1,049.24 667.98 33.93 97.39 3,992.42 1,400.84

0.05 Mean 4.45 11.27 11.02 148.03 9.44 31.59 43.20 415.80 25.64 76.53 267.16 1,104.63
Var@95% 28.61 75.43 76.52 985.44 45.27 154.51 266.72 2,047.20 136.54 392.51 1,607.64 5,718.00
Var@99% 36.73 115.09 151.12 1,500.59 58.47 231.00 534.87 3,090.96 163.06 468.51 2,148.72 6,811.64
Standard deviation 9.71 26.51 419.41 347.61 15.94 55.96 1,338.42 737.92 46.92 141.67 7,390.43 2,058.87

0.10 Mean 5.70 14.14 15.50 185.58 11.57 35.18 50.97 464.15 33.54 104.70 446.90 1,526.94
Var@95% 34.65 79.45 98.29 1,081.31 49.02 157.20 268.66 2,055.68 163.81 520.96 2,616.08 7,610.88
Var@99% 43.10 135.41 206.89 1,760.28 62.97 213.50 517.99 2,799.72 182.17 587.16 3,096.05 8,519.88
Standard deviation 11.65 30.45 575.97 399.74 18.13 56.36 1,443.08 743.67 58.29 187.71 11,796.93 2,761.86

Figure 2. (Color online) Distribution of Equity-Related Indices of Shortage Observed Out-of-Sample 
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5.2. Comparison of Total Shortage Performance
To compare the performance in terms of total shortages 
under the PRNDP-E, PRNDP-NE-E, and PRNDP-NE, 
we return to Figure 2, where the last two columns of 
subfigures present the distributions of worst shortage 
among all the locations and the distributions of total 
shortage, both measured out-of-sample. Specifically, 
we find that, whereas the distribution of total shortage 
for PRNDP-E is similar to PRNDP-NE (only 22% more 

total shortage on average based on Table 3, see when 
∆� 0), its distribution of worst shortages is significantly 
improved (nearly 5 times less for the average). This 
observation confirms that PRNDP-E supports the most 
vulnerable groups without necessarily incurring a large 
loss in terms of total shortage. In contrast, while the 
PRNDP-NE-E does reduce the worst shortage (nearly 3 
times less for the average), this comes at a heavy price 
in terms of total shortage (doubling it on average).

Additionally, Table 3 provides a summary of out-of- 
sample shortage performance data with different pertur
bation ∆ of the mean of the out-of-sample distribution. 
The previous observation remain stable: PRNDP-E signifi
cantly reduces the worst shortage while only slightly 
increasing the total shortage, unlike PRNDP-NE-E. The 
reason for this seems to be that the preparation of PRNDP- 
NE-E only considers total shortages, thus changing the 
objective to equity after the disaster occurs leads to exces
sive unforeseen costs.

5.3. Differences in Deployment Plans
We further investigate deployment patterns of PRNDP- 
E and PRNDP-NE (the same for PRNDP-NE-E). As 
shown in Figure 4 (see Online Appendix D.7 for addi
tional details), we depict the inventory and expected 
shortages at each location, where the height of the rect
angle next to each open facility captures its proportion 
of total emergency supplies, and the radius of the circle 
under each location captures its proportion of total 
shortage. It suggests that, the PRNDP-E prefers a more 

Figure 3. (Color online) Gini Coefficient (Measured Out-of- 
Sample) Under PRNDP-E, PRNDP-NE-E, and PRNDP-NE 

Table 3. Out-of-Sample Statistics of Shortage Under PRNDP-E, PRNDP-NE-E, and 
PRNDP-NE

∆ Statistic

PRNDP-E PRNDP-NE-E PRNDP-NE

Worst Sum Worst Sum Worst Sum

�0.10 Mean 0.46 5.20 2.64 27.10 3.57 4.70
Var@95% 3.41 38.06 18.04 190.60 25.26 31.25
Var@99% 10.66 117.26 28.74 290.07 37.69 57.12
Standard deviation 1.81 20.00 6.50 65.88 8.76 12.00

�0.05 Mean 1.84 21.03 4.85 50.97 8.50 14.94
Var@95% 12.36 143.24 28.61 296.95 49.46 92.25
Var@99% 19.56 221.19 41.29 421.58 74.52 148.82
Standard deviation 4.58 51.60 10.04 104.30 17.83 33.55

0.00 Mean 3.68 42.83 7.31 72.78 17.59 35.03
Var@95% 20.04 234.48 37.05 392.10 90.37 192.89
Var@99% 28.03 311.33 47.49 500.50 142.62 238.45
Standard deviation 7.45 85.74 13.14 140.31 33.93 68.08

0.05 Mean 5.28 62.17 9.50 104.03 25.64 53.89
Var@95% 28.65 327.09 45.27 493.90 136.54 279.80
Var@99% 36.73 411.40 58.47 604.14 163.06 327.09
Standard deviation 10.29 120.37 15.95 174.63 46.92 101.43

0.10 Mean 7.22 85.67 11.64 129.96 33.54 76.03
Var@95% 35.26 426.86 49.02 549.36 163.81 385.02
Var@99% 43.10 487.46 62.97 697.44 182.17 438.39
Standard deviation 12.95 153.73 18.15 204.44 58.29 139.53

Li et al.: Distributional Robustness and Inequity Mitigation 
14 Manufacturing & Service Operations Management, Articles in Advance, pp. 1–18, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

12
0.

23
4.

13
3]

 o
n 

30
 O

ct
ob

er
 2

02
3,

 a
t 1

8:
07

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



decentralized deployment of emergency supplies by 
establishing more facilities in rural areas (e.g., location 
11), whereas the PRNDP-NE centralizes everything to 
minimize the total shortage. Moreover, for the PRNDP- 
E, the amount of resources prepositioned in open facili
ties is between 155 to 498, while the PRNDP-NE varies 
from 127 to 685. As a result, each region can have access 
to a portion of the supplies under the PRNDP-E so that 
there will not be severe shortages in each region. For 
PRNDP-NE, however, it sacrifices some high shortages 
in some rural regions (e.g., locations 8–11) to be able to 
match the shortage in a large number of places.

5.4. Impact of Donations and Budget Constraints
Donations and budgets are major concerns of the HOs 
in predisaster deployment; they also directly affect the 
shortage situation after the disaster occurs. If the HOs 
do not receive adequate donations and funds for the 
prepositioning of emergency supplies, the vulnerable 
population will inevitably face a relief shortage after a 

disaster. Our numerical study shows that donations 
and budgets have similar effects, so we focus in this 
section on the impact of varying the amount of total 
donations on shortages, whereas we refer interested 
readers to Online Appendix D.6 for a study on the 
impact of budget. Specifically, we set the total amount 
of supplies to R� {1,700, 1,750, 1,800, 1,850, 1,900} and 
evaluate the impact of different donations.

Figure 5 reports the out-of-sample expected shortage 
under different donation levels. First, in Figure 5(a), 
the expected shortage at each location shows a decreas
ing trend as donations increase. However, if equity is 
not fully considered, then we find that increasing dona
tion does not necessarily reduce shortages and even 
increase shortages in some locations. It indicates that 
HOs cannot simply increase the amounts of supplies to 
reduce the shortages at each location, but must instead 
do so through equitable and reasonable resource alloca
tion. As stated by Besiou and Van Wassenhove (2020, 
p. 3): “Reduced funding calls for careful prioritization 

Figure 4. (Color online) Deployment Plan and Expected Shortage (Measured Out-of-Sample) at Each Location 

(a) (b)

Notes. (a) PRNDP-E. (b) PRNDP-NE.

Figure 5. (Color online) Expected Shortage (Measured Out-of-Sample) at Each Location Under Different Donation Levels 

Notes. (a) PRNDP-E. (b) PRNDP-NE-E. (c) PRNDP-NE.
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and cost-effectiveness, but it should be noted that this 
may conflict with equity and other ethical consider
ations.” Our work can give an equitable solution when 
the donation is reduced. Second, we can find that the 
expected shortage reduction is not symmetric across all 
locations and not necessarily proportional to the per
centage increase in donations, which is consistent with 
observation 6 in Stauffer and Kumar (2021). Third, the 
shortage gaps between demand locations under 
PRNDP-E is smaller than under PRNDP-NE-E and 
PRNDP-NE, which demonstrates the equity efficiency 
of PRNDP-E from another perspective.

5.5. Impact of Uncertainty Model
The RSO framework unifies both scenario tree-based sto
chastic optimization (SAA) and distributionally robust 
optimization (DRO). To further illustrate the perfor
mance of RSO model, we compare the out-of-sample 
performance of the three models in dealing with equity 
concerns. Specifically, Figure 6(a) presents the average 
of out-of-sample MSG under RSO, DRO, and SAA mod
els for 1,000 test samples. We observe that the RSO 
model delivers a significantly better performance than 
the DRO and SAA models. In particular, when the out- 
of-sample demands have higher mean (i.e., ∆ increases 
from �0.1 to 0.1), the gap between the RSO and the 
other two models becomes greater. Moreover, to com
pare the stability of the methods, we report the box plot 
of out-of-sample MSG under RSO, DRO, and SAA mod
els in Figure 6(b). We find that the values under the RSO 
have the smallest variation between both 25%–50% and 
5%–95%, whereas DRO and SAA incur a relatively large 
variation. Furthermore, we notice that even for outliers 
exceeding 95%, the performance of RSO is still better 
than that of DRO and SAA. The previous results confirm 
that the event-wise ambiguity set helps to more clearly 
describe the uncertainty of relief demand and alleviate 
the inequities caused by uncertain shortages.

6. Managerial Insights and Conclusions
Our work considers three important practical aspects of 
humanitarian operations: shortages, equity, and uncer
tainty. Mathematically, we propose a new branch-and- 
bound algorithm for the mixed-integer lexicographic 
optimization problem with nonconvex objectives and 
prove its optimality. To identify optimal adaptable re
source reallocation, we propose two approaches: an exact 
approach and a conservative approximation that allows 
us to solve instances of realistic size.

Our research also proposes several managerial recom
mendations for the HOs: 
• Decision making that incorporates equity in pre

disaster deployment and postdisaster reallocation is, in 
some cases (see Sections 5.1 and 5.2), able to significantly 
reduce the shortage of the most vulnerable participants 
while only incurring a reasonable increase in total short
age. Indeed, although the goal of HOs is usually to mini
mize the total shortage, the media will often focus on 
the most seriously affected participants implying that 
the HOs is inequitable in their allocation of resources. 
Models such as PRNDP-E can definitely help the HOs 
better anticipate and mitigate such issues.
• Although donation and budget constraints limit the 

amount of relief resources available to each beneficiary, 
the individual shortage may not be alleviated with 
increased budgets and donations if equity is not fully 
incorporated. To respond to the needs of the most vul
nerable people, HOs often request increased relief assis
tance. This does help reduce total shortages, but that is 
not necessarily the case for individuals. The results in 
Section 5.4 show that the shortages experienced by some 
participants do not decrease proportionally (or even 
increase at all) with an increase in donations.
• Disaster event-wise information, if properly seg

mented, can help alleviate inequities caused by uncer
tain relief demands. Although disasters are extremely 
unpredictable and relief demands are difficult to accu
rately estimate, the use of historical data and/or prior 

Figure 6. (Color online) Out-of-Sample Performance of RSO, DRO, and SAA Models 
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knowledge can improve decision-making effects. Numer
ical studies in Section 5.5 demonstrate that the event-wise 
ambiguity sets outperform the classical moment ambigu
ity sets and SAA in alleviating inequities, which may be 
regarded as a useful exploration of data-driven methods 
in disaster relief management.

In terms of future work, we identify three promising 
directions. First, whereas this study focuses on how to 
best allocate predisaster donations, it could be interest
ing to also model the postdisaster donations and inves
tigate how such donation might influence optimal 
predisaster network design strategies. We also find rel
evant to further investigate whether more sophisticated 
acceleration schemes could be identified to accelerate 
the proposed branch-and-bound algorithm for lexico
graphic optimization. This might facilitate the deploy
ment of lexicographic based solutions in application 
domains where the computational needs of our current 
method become prohibitive.

Finally, our current work somehow neglects (as with 
most of the literature on SSMs) the question of how to 
properly set the threshold levels for the SSM in each of 
the regions. In practice, each τi should depend on the 
socio-economical and infrastructural characteristics of 
the region that it describes. In the case of earthquake pre
paredness, de Goyet et al. (2006) points out that water 
shortage risk (see p. 1153) can be much more severe than 
other ones. In this case, the threshold level should be 
adjusted to account for the physiological limits before 
severe dehydration occurs, for example, the population 
losing more than 10% of their body water, which is 
known to lead to physical and mental deterioration and 
even death (Ashcroft 2002). In terms of infrastructural 
shortages, it is also well known that socio-economically 
disadvantaged regions take more time to rebuild and 
reinstate their services thus motivating the use of higher 
shortage thresholds for such regions.
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